

				Relations								
		Basi	c Level									
1.	A relation from P to Q i	s		[AMU 1998]								
	(a) A universal set of P	$\times Q(b) P \times Q$	(c) An equivalent set of	$P \times Q$ (d) A subset of $P \times Q$								
2.	Let <i>R</i> be a relation from a set <i>A</i> to set <i>B</i> , then											
	(a) $R = A \cup B$	(b) $R = A \cap B$	(c) $R \subseteq A \times B$	(d) $R \subseteq B \times A$								
3.	Let $A = \{a, b, c\}$ and $B =$	Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation R defined from set A to set B. Then R is equal to set[Kurukshetra										
	(a) <i>A</i>	(b) <i>B</i>	(c) $A \times B$	(d) $B \times A$								
1.	Let $n(A) = n$. Then the number of all relations on A is											
	(a) 2^n	(b) $2^{(n)!}$	(c) 2^{n^2}	(d) None of these								
5.	If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is											
	(a) 2 ^{mn}	(b) $2^{mn} - 1$	(c) 2mn	(d) m^{n}								
6.	Let R be a reflexive relation on a finite set A having n-elements, and let there be m ordered pairs in R. Then											
	(a) $m \ge n$	(b) $m \leq n$	(c) $m = n$	(d) None of these								
7.	The relation <i>R</i> defined on the set <i>A</i> = {1, 2, 3, 4, 5} by <i>R</i> = {(<i>x</i> , <i>y</i>) : $ x^2 - y^2 < 16$ } is given by											
	(a) {(1, 1), (2, 1), (3, 1),	(4, 1), (2, 3)}	(b) {(2, 2), (3, 2), (4, 2)	, (2, 4)}								
	(c) {(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)} (d) None of these											
8.	A relation <i>R</i> is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by; $xRy \Leftrightarrow x$ is relatively prime to <i>y</i> . Then domain of <i>R</i> is											
	(a) {2, 3, 5}	(b) {3, 5}	(c) {2, 3, 4}	(d) {2, 3, 4, 5}								
9.	Let <i>R</i> be a relation on <i>N</i> defined by $x + 2y = 8$. The domain of <i>R</i> is											
	(a) {2, 4, 8}	(b) {2, 4, 6, 8}	(c) {2, 4, 6}	(d) {1, 2, 3, 4}								
10.	If $R = \{(x,y) x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in <i>Z</i> , then domain of <i>R</i> is											
	(a) {0, 1, 2}	(b) {0, -1, -2}	(c) $\{-2, -1, 0, 1, 2\}$	(d) None of these								
11.	If $A = \{1, 2, 3\}$, $B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by 'x is greater than y'. The range of R is											
	(a) {1, 4, 6, 9}	(b) {4, 6, 9}	(c) {1}	(d) None of these								
12.	<i>R</i> is a relation from {11, 12, 13} to {8, 10, 12} defined by $y = x - 3$. Then R^{-1} is											
	(a) {(8, 11), (10, 13)}	(b) {(11, 18), (13, 10)}	(c) $\{(10, 13), (8, 11)\}$	(d) None of these								

CLICK HERE

Get More Learning Materials Here : 📕

Regional www.studentbro.in

13.	Let $A = \{1, 2, 3\}, B = \{1, 3\}$, 5}. If relation <i>R</i> from <i>A</i> to <i>B</i>	is given by $R = \{(1, 3), (2, 5)\}$, (3, 3)}. Then R^{-1} is									
	(a) {(3, 3), (3, 1), (5, 2)}	(b) {(1, 3), (2, 5), (3, 3)}	(c) {(1, 3), (5, 2)}	(d) None of these									
14.	Let <i>R</i> be a reflexive relation	on on a set A and I be the ide	ntity relation on A. Then										
	(a) $R \subset I$	(b) $I \subset R$	(c) $R = I$	(d) None of these									
15.	Let $A = \{1, 2, 3, 4\}$ and R be a relation in A given by $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$. Then R is												
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) An equivalence relation									
16.	An integer m is said to be related to another integer n if m is a multiple of n . Then the relation is												
	(a) Reflexive and symme transitive	tric (b) (d) Equivalence relation	Reflexive and transitive	(c) Symmetric and									
17.	The relation R defined in N as $aRb \Leftrightarrow b$ is divisible by a is												
	(a) Reflexive but not sym	nmetric	(b) Symmetric but not tra	unsitive (c)									
18.	Let <i>R</i> be a relation on a se	Let <i>R</i> be a relation on a set <i>A</i> such that $R = R^{-1}$, then <i>R</i> is											
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these									
19.	Let $R = \{(a, a)\}$ be a relat	ion on a set A. Then R is											
	(a) Symmetric		(b) Antisymmetric										
	(c) Symmetric and antisy anti-symmetric	vmmetric	(d)	Neither symmetric nor									
20.	The relation "is subset of	" on the power set <i>P</i> (<i>A</i>) of a s	et A is										
	(a) Symmetric	(b) Anti-symmetric	(c) Equivalency relation	(d) None of these									
21.	The relation <i>R</i> defined on	a set <i>A</i> is antisymmetric if (a	$(a,b) \in R \Longrightarrow (b,a) \in R$ for										
	(a) Every $(a, b) \in R$	(b) No $(a,b) \in R$	(c) No $(a,b), a \neq b, \in \mathbb{R}$	(d) None of these									
22.	In the set <i>A</i> = {1, 2, 3, 4, 5}, a relation <i>R</i> is defined by <i>R</i> = {(<i>x</i> , <i>y</i>) <i>x</i> , <i>y</i> \in <i>A</i> and <i>x</i> < <i>y</i> }. Then <i>R</i> is												
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these									
23.	Let <i>A</i> be the non-void set	of the children in a family. Th	ne relation 'x is a brother of	y' on A is									
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these									
24.	Let $A = \{1, 2, 3, 4\}$ and let	t $R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}$	2)} be a relation on A. Then 2	R is									
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these									
25.	The void relation on a set	A is											
	(a) Reflexive (b) Symmetric and transitive(c) Reflexive and symmetric (d)Reflexive and transitive												
26.	Let R_1 be a relation defined by $R_1 = \{(a,b) a \ge b, a, b \in R\}$. Then R_1 is												
	(a) An equivalence relati not symmetric	on on R	(b) Reflexive, transitive										
	(c) Symmetric, Transitiv	e but not reflexive	(d) Neither transitive not reflexive but symmetric										
27.	Let $A = \{p, q, r\}$. Which of the following is an equivalence relation on A												
	(a) $R_1 = \{(p, q), (q, r), (p, r)\}$	(p, r), (p, p)	(b) $R_2 = \{(r, q), (r, p), (r, r), (q, q)\}$										
	(c) $R_3 = \{(p, p), (q, q), (p, q)\}$	r, r), (p, q)}	(d) None of these										
28.	Which one of the following relations on <i>R</i> is an equivalence relation												
	(a) $aR_1b \Leftrightarrow a \neq b $	(b) $aR_2b \Leftrightarrow a \ge b$	(c) $aR_3b \Leftrightarrow a \text{ divides } b$	(d) $aR_4b \Leftrightarrow a < b$									
20	If <i>R</i> is an equivalence rela	ation on a set A, then R^{-1} is											

Get More Learning Materials Here : 💻

30	Set Theory and Relation	15										
	(a) Reflexive only	(b) Symmetric but not tran	sitive (c)	Equivalence (d)								
30.	<i>R</i> is a relation over the set of real numbers and it is given by $nm \ge 0$. Then <i>R</i> is											
	(a) Symmetric and trans	itive (b)	Reflexive and symmetric	(c) A partial order relation(d								
31.	In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R											
	(a) Is reflextive		(b) Is symmetric									
	(c) Is transitive		(d) Possesses all the abov	(d) Possesses all the above three properties								
32.	The relation "congruence modulo <i>m</i> " is											
	(a) Reflexive only	(b) Transitive only	(c) Symmetric only	(d) An equivalence relation								
33.	Solution set of $x \equiv 3$ (mo	od 7), $x \in Z$, is given by										
	(a) {3}	(b) $\{7p-3: p \in Z\}$	(c) $\{7p+3: p \in Z\}$	(d) None of these								
34.	Let <i>R</i> and <i>S</i> be two equivalence relations on a set <i>A</i> . Then											
	(a) $R \cup S$ is an equivalen	ce relation on A	(b) $R \cap S$ is an equivalence relation on A									
	(c) $R-S$ is an equivalent	ice relation on A	(d) None of these									
35.	Let <i>R</i> and <i>S</i> be two relations on a set <i>A</i> . Then											
	(a) R and S are transitive	e, then $R \cup S$ is also transitive	(b) <i>R</i> and <i>S</i> are transitive, then $R \cap S$ is also transitive									
	(c) <i>R</i> and <i>S</i> are reflexive symmetric	, then $R \cap S$ is also reflexive	(d) R and S are symmetric then $R \cup S$ is also									
36.	Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$											
	(a) {(1, 3), (2, 2), (3, 2),	(2, 1), (2, 3)}	(b) {(3, 2), (1, 3)}									
	(c) {(2, 3), (3, 2), (2, 2)}		(d) {(2, 3), (3, 2)}									
37.	In problem 36, $RoS^{-1} =$											
	(a) {(2, 2), (3, 2) (2, 3)}	(b) {(1, 2), (2, 2), (3, 2)}	(c) {(1, 2), (2, 2)}	(d) {(1, 2), (2, 2), (3, 2),								
		Advance	e Level									
38.	Let <i>R</i> be a relation on the	e set N be defined by $\{(x, y) \mid x\}$, <i>y</i> ∈ <i>N</i> , 2 <i>x</i> + <i>y</i> = 41}. Then <i>R</i>	2 is								
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these								
39.	Let <i>L</i> denote the set of all straight lines in a plane. Let <i>a</i> relation <i>R</i> be defined by $\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then <i>R</i> is											
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these								
40.	Let <i>T</i> be the set of all $a \approx b, a, b \in T$. Then <i>R</i> is	triangles in the Euclidean p	lane, and let a relation R	be defined on T by aRb iff								

(a) Reflexive but not transitive(b)Transitive but not symmetric(c)Equivalence**41.** Two points P and Q in a plane are related if OP = OQ, where O is a fixed point. This relation isEquivalence

(a) Partial order relation (b) Equivalence relation (c) Reflexive but not symmetric (d)

42. Let *r* be a relation over the set $N \times N$ and it is defined by $(a,b)r(c,d) \Rightarrow a+d=b+c$. Then *r* is

(a) Reflexive only(b) Symmetric only(c) Transitive only(d) An equivalence relation**43.** Let L be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be related by the relation R iff l_1 is parallel to l_2 . Then the relation R is

CLICK HERE

>>

(a) Reflexive (b) Symmetric (c) Transitive (d) Equivalence

Get More Learning Materials Here :

Set Theory and Relations **31**

44.	Let <i>n</i> be a fixed positive integer. Define a relation <i>R</i> on the set <i>Z</i> of integers by, $aRb \Leftrightarrow n a-b $. Then <i>R</i> is											
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Equivalence								

Get More Learning Materials Here : 💻

${\cal A}$ nswer Sheet

0	Answer Sheet (Advance & Basic Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	с	с	с	a	a	d	d	с	с	с	a	a	b	a,b	b	a	b	с	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3 6	37	38	39	40
С	С	b,c	С	b	b	d	а	с	d	d	d	с	b	b,c,d	с	b	d	b	с
41	42	43	44																
b	d	a,b	a,b																
		,c, d	,c, d																

Get More Learning Materials Here : 📕

